logo

Kolik žije červené krvinky

Mikrosfocyty, ovalocyty mají nízkou mechanickou a osmotickou rezistenci. Tlusté nabobtnalé erytrocyty aglutinují a stěží projdou venózními sinusoidy sleziny, kde přetrvávají a podléhají lýze a fagocytóze.

Intravaskulární hemolýza je fyziologické rozpad červených krvinek přímo v krevním řečišti. To představuje asi 10% všech hemolyzujících buněk. Tento počet zničených erytrocytů odpovídá 1 až 4 mg volného hemoglobinu (ferrohemoglobin, ve kterém Fe 2+) ve 100 ml krevní plazmy. Hemoglobin uvolňovaný v krevních cévách v důsledku hemolýzy je vázán v krvi na plazmatické bílkoviny, haptoglobin (hapto, I “vázat” v řečtině), který se odkazuje na α2-globuliny. Výsledný komplex hemoglobin-haptoglobin má Mm 140 až 320 kDa, zatímco glomerulární filtr ledvin prochází molekulami Mm menšími než 70 kDa. Komplex je absorbován RES a je zničen jeho buňkami.

Schopnost haptoglobinu vázat hemoglobin zabraňuje jeho extrarenální eliminaci. Schopnost haptoglobinu vázat hemoglobin je 100 mg ve 100 ml krve (100 mg%). Překročení rezervní kapacity haptoglobinu vázající hemoglobin (při koncentraci hemoglobinu 120-125 g / l) nebo snížení jeho hladiny v krvi je doprovázeno uvolňováním hemoglobinu ledvinami močí. To je případ masivní intravaskulární hemolýzy.

Při vstupu do renálních tubulů je hemoglobin adsorbován buňkami renálního epitelu. Hemoglobin reabsorbovaný renálním tubulárním epitelem je zničen in situ za vzniku feritinu a hemosiderinu. Je zde hemosideróza renálních tubulu. Epiteliální buňky renálních tubulu, naložené hemosiderinem, jsou exfoliovány a vylučovány močí. S hemoglobinemií přesahující 125-135 mg ve 100 ml krve je tubulární reabsorpce nedostatečná a v moči se objeví volný hemoglobin.

Neexistuje jasný vztah mezi hladinou hemoglobinemie a výskytem hemoglobinurie. Při perzistentní hemoglobinemii může dojít k hemoglobinurii s nižším počtem hemoglobinu v plazmě. Snížení koncentrace haptoglobinu v krvi, což je možné při dlouhodobé hemolýze v důsledku jeho konzumace, může způsobit hemoglobinurii a hemosiderinurii při nižších koncentracích volného hemoglobinu v krvi. S vysokou hemoglobinemií se část hemoglobinu oxiduje na methemoglobin (ferryhemoglobin). Možný rozpad hemoglobinu v plazmě na subjekt a globin. V tomto případě je hem vázán albuminem nebo specifickým plazmatickým proteinem, hemopexinem. Komplexy pak, podobně jako hemoglobin-haptoglobin, podléhají fagocytóze. Stromy erytrocytů jsou absorbovány a zničeny makrofágy sleziny nebo zadrženy v koncových kapilárách periferních cév.

Laboratorní známky intravaskulární hemolýzy:

Abnormální intravaskulární hemolýza může nastat u toxického, mechanického, radiačního, infekčního, imunitního a autoimunitního poškození membrány erytrocytů, nedostatku vitamínů, krevních parazitů. Zvýšená intravaskulární hemolýza je pozorována při paroxyzmální noční hemoglobinurii, enzymatických enzymech erytrocytů, parazitózách, zejména malárii, získané autoimunitní hemolytické anémii, komplikacích po transfúzi, nekompatibilitě parenchymálního poškození jater, těhotenství a jiných onemocnění.

Erytrocyty: funkce, krevní množstevní normy, příčiny odchylek

První školní výuka o struktuře lidského těla představuje hlavní „obyvatele krve: červené krvinky - červené krvinky (Er, RBC), které určují barvu v důsledku železa obsaženého v nich a bílé (leukocyty), jejichž přítomnost není viditelná, protože nemají vliv.

Lidské erytrocyty, na rozdíl od zvířat, nemají jádro, ale předtím, než ho ztratí, musí jít cestou z erythroblastové buňky, kde začíná syntéza hemoglobinu, aby dosáhla posledního jaderného stadia - hemoglobinu akumulačního hemoglobinu normoblastů a proměnila se ve zralou buňku bez jader, hlavní složkou je červený krevní pigment.

Co lidé s erytrocyty neudělali, zkoumali jejich vlastnosti: snažili se je zabalit po celém světě (ukázalo se 4krát) a vložili je do sloupců mincí (52 tisíc kilometrů) a porovnávali plochu erytrocytů s povrchem lidského těla (erytrocyty překročily všechna očekávání) jejich plocha byla 1,5 tisíckrát vyšší).

Tyto unikátní buňky...

Další důležitou vlastností červených krvinek je jejich bikonkávní tvar, ale pokud by byly sférické, celková plocha by byla o 20% méně reálná. Nicméně schopnost červených krvinek není jen ve velikosti jejich celkové plochy. Vzhledem k tvaru bikonkávního disku:

  1. Červené krvinky jsou schopny nést více kyslíku a oxidu uhličitého;
  2. Pro ukázání plasticity a svobodného průchodu úzkými otvory a zakřivenými kapilárními cévami, tj. Pro mladé plnohodnotné buňky v krevním řečišti, nejsou prakticky žádné překážky. Schopnost proniknout do nejvzdálenějších koutů těla je ztracena s věkem červených krvinek, stejně jako během jejich patologických stavů, kdy se mění jejich tvar a velikost. Například, sférocyty, srpkovité, váhy a hrušky (poikilocytóza), nemají tak vysokou plasticitu, nemohou plazit makrocyty do úzkých kapilár, a ještě více megalocytů (anisocytózy), proto jejich modifikované buňky neplní tak bezchybně.

Chemické složení Er představuje především voda (60%) a suchý zbytek (40%), kde 90–95% je obsazeno červeným krevním pigmentem, hemoglobinem a zbývajících 5–10% je distribuováno mezi lipidy (cholesterol, lecitin, kefalin), proteiny, sacharidy, soli (draslík, sodík, měď, železo, zinek) a samozřejmě enzymy (karboanhydráza, cholinesteráza, glykolytika atd.).

Buněčné struktury, které jsme zvyklí označit v jiných buňkách (jádro, chromozomy, vakuoly), Er chybí jako zbytečné. Červené krvinky žijí do 3 - 3,5 měsíce, pak stárnou a pomocí erytropoetických faktorů, které se uvolní, když je buňka zničena, dávají příkaz, že je čas je nahradit novými - mladými a zdravými.

Červené krvinky pocházejí od svých předchůdců, které zase pocházejí z kmenových buněk. Červené krvinky se reprodukují, pokud je vše v těle normální, v kostní dřeni plochých kostí (lebka, páteř, hrudní kost, žebra, pánevní kosti). V případech, kdy kostní dřeň z jakéhokoli důvodu nemůže produkovat (poškození tumoru), červené krvinky „pamatují“, že jiné orgány (játra, brzlík, slezina) byly zapojeny do intrauterinního vývoje a nutily tělo, aby začalo erytropoézu na zanedbaných místech.

Kolik by mělo být normální?

Celkový počet červených krvinek obsažených v těle jako celku a koncentrace červených krvinek v krevním řečišti jsou různé. Celkový počet zahrnuje buňky, které ještě neopustily kostní dřeň, odešly do depa v případě nepředvídaných okolností nebo propluly k výkonu svých bezprostředních povinností. Kombinace všech tří populací erytrocytů se nazývá erythron. Eritron obsahuje od 25 x 1012 / l (Tera / litr) do 30 x 10 12 / l červených krvinek.

Rychlost erytrocytů v krvi dospělých se liší podle pohlaví a u dětí v závislosti na věku. Tak:

  • Norma u žen se pohybuje v rozmezí od 3,8 do 4,5 x 10 12 / l, resp. Mají méně hemoglobinu;
  • Normální ukazatel pro ženu se nazývá mírná anémie u mužů, protože dolní a horní hranice normy červených krvinek je znatelně vyšší: 4,4 x 5,0 x 10 12 / l (totéž platí pro hemoglobin);
  • U dětí mladších než jeden rok se koncentrace červených krvinek neustále mění, takže každý měsíc (u novorozenců - každý den) existuje norma. A pokud náhle v krevním testu, červené krvinky u dítěte dvou týdnů jsou zvýšeny na 6,6 x 10 12 / l, pak to nelze považovat za patologii, jen u novorozenců takovou rychlost (4,0 - 6,6 x 10 12 / l).
  • Některé výkyvy jsou pozorovány po roce života, ale normální hodnoty se příliš neliší od hodnot u dospělých. U adolescentů ve věku 12-13 let odpovídá obsah hemoglobinu v erytrocytech a samotných erytrocytech normě dospělých.

Zvýšené hladiny červených krvinek v krvi se nazývají erytrocytóza, která je absolutní (pravdivá) a redistribuční. Redistribuční erytrocytóza není patologií a vyskytuje se, když jsou za určitých okolností zvýšené hladiny červených krvinek:

  1. Zůstaňte na Vysočině;
  2. Aktivní tělesná práce a sport;
  3. Emoční vzrušení;
  4. Dehydratace (ztráta tělesné tekutiny pro průjem, zvracení atd.).

Vysoké hladiny červených krvinek v krvi jsou známkou patologie a pravé erytrocytózy, pokud jsou výsledkem zvýšené tvorby červených krvinek způsobené neomezenou proliferací (reprodukcí) progenitorové buňky a její diferenciací na zralé erytrocyty (erythremia).

Snížení koncentrace červených krvinek se nazývá erythropenie. Je pozorován při ztrátě krve, inhibici erytropoézy, rozpadu erytrocytů (hemolýze) pod vlivem nepříznivých faktorů. Nízké červené krvinky a nízká hladina Hb v červených krvinkách je známkou anémie.

Co říká zkratka?

Moderní hematologické analyzátory, kromě hemoglobinu (HGB), nízkého nebo vysokého obsahu červených krvinek (RBC), hematokritu (HCT) a dalších obvyklých analýz, mohou být vypočteny jinými ukazateli, které jsou označeny latinskými zkratkami a čtenáři nejsou vůbec jasné:

  • MCH je průměrný obsah hemoglobinu v erytrocytech, jehož norma v analyzátoru je 27-31 pg v analyzátoru může být srovnána s barevným indexem (CI), který ukazuje stupeň nasycení erytrocytů hemoglobinem. CPU se vypočítá podle vzorce, je normálně roven nebo větší než 0,8, ale nepřesahuje 1. Podle barevného indexu, normochromie (0,8 - 1), hypochromie červených krvinek (méně než 0,8) se stanoví hyperchromie (více než 1). SIT se zřídka používá k určení povahy anémie, její zvýšení je více indikativní pro hyperchromní megaloblastickou anémii, která doprovází cirhózu jater. Snížení hodnot SIT indikuje přítomnost hyperchromie erytrocytů, která je charakteristická pro IDA (anémie z nedostatku železa) a neoplastické procesy.
  • MCHC (průměrná koncentrace hemoglobinu v Er) koreluje s průměrným objemem červených krvinek a průměrným obsahem hemoglobinu v červených krvinkách, počítáno z hodnot hemoglobinu a hematokritu. MCHC se snižuje s hypochromní anémií a talasemií.
  • MCV (průměrný objem červených krvinek) je velmi důležitým ukazatelem, který určuje typ anémie charakteristikou červených krvinek (normocyty jsou normální buňky, mikrocyty jsou liliputiáni, makrocyty a megalocyty jsou giganty). Kromě diferenciace anémie se MCV používá k detekci porušení rovnováhy vody a soli. Vysoké hodnoty indexu indikují hypotonické poruchy v plazmě, naopak snížené hypertonické stavy.
  • RDW - distribuce červených krvinek podle objemu (anisocytóza) indikuje heterogenitu buněčné populace a pomáhá diferencovat anémii v závislosti na hodnotách. Distribuce červených krvinek podle objemu (spolu s výpočtem MCV) je snížena mikrocytární anémií, ale měla by být studována současně s histogramem, který je také součástí funkcí moderních přístrojů.

Kromě všech uvedených výhod erytrocytů bych chtěl ještě jednou poznamenat:

Červené krvinky jsou považovány za zrcadlo odrážející stav mnoha orgánů. Druhem indikátoru, který může „cítit“ problém nebo umožňuje sledovat průběh patologického procesu, je rychlost sedimentace erytrocytů (ESR).

Velká loď - velká plavba

Proč jsou červené krvinky tak důležité pro diagnostiku mnoha patologických stavů? Jejich zvláštní role proudí a je tvořena na základě jedinečných příležitostí, a tak si čtenář dokáže představit skutečný význam červených krvinek, budeme se snažit vyjmenovat jejich odpovědnosti v těle.

Funkční úkoly červených krvinek jsou skutečně široké a rozmanité:

  1. Přenášejí kyslík do tkání (za účasti hemoglobinu).
  2. Nosit oxid uhličitý (s účastí, kromě hemoglobin, enzym karbonanhydráza a iontoměniče Cl- / HCO)3).
  3. Provádí ochrannou funkci, protože jsou schopny adsorbovat škodlivé látky a nést protilátky (imunoglobuliny), složky komplementárního systému, vytvořené imunitní komplexy (At-Ag) na svém povrchu a také syntetizovat antibakteriální látku zvanou erythrin.
  4. Podílet se na výměně a regulaci vodní rovnováhy.
  5. Poskytují výživu tkání (červené krvinky adsorbují a přenášejí aminokyseliny).
  6. Podílet se na udržování informačních vazeb v těle v důsledku přenosu makromolekul, které tyto vazby poskytují (tvůrčí funkce).
  7. Obsahují tromboplastin, který opouští buňku během destrukce červených krvinek, což je signál pro koagulační systém, aby zahájil hyperkoagulaci a tvorbu krevních sraženin. Kromě tromboplastinu nesou erytrocyty heparin, který zabraňuje trombóze. Aktivní účast červených krvinek v procesu srážení krve je tedy zřejmá.
  8. Červené krvinky jsou schopny potlačit vysokou imunoreaktivitu (hrají roli supresorů), které mohou být použity při léčbě různých nádorových a autoimunitních onemocnění.
  9. Podílí se na regulaci produkce nových buněk (erytropoéza) uvolňováním erytropoetických faktorů ze zničených starých erytrocytů.

Červené krvinky jsou zničeny hlavně v játrech a slezině za vzniku produktů rozkladu (bilirubin, železo). Mimochodem, pokud vezmeme v úvahu každou buňku zvlášť, nebude tak červená, spíše žlutavě červená. Po nahromadění v obrovských masách miliónů se díky hemoglobinu v nich stávají stejnými, jak jsme je viděli - bohatou červenou barvou.